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A neural network tool was used to discover a new nickel-base alloy for direct laser deposition most
likely to satisfy targets of processability, cost, density, phase stability, creep resistance, oxidation,
fatigue life, and resistance to thermal stresses. The neural network tool can learn property-property
relationships, which allows it to use a large database of thermal resistance measurements to guide
the extrapolation of just ten data entries of alloy processability. The tool was used to propose a
new alloy, and experimental testing confirms that the physical properties of the proposed alloy are
better tailored to the target application than other available commercial alloys.

Direct laser deposition promises to accelerate the man-
ufacturing process so that new components can go from
drawing board to reality in a matter of hours. How-
ever, for this process to realize its full potential a new
generation of materials are required that can accommo-
date the high temperature and stress gradients generated
during this unique manufacturing process. Contempo-
rary approaches to the development of new materials re-
mains a lengthy process of experiment-driven trial and
improvement1. There is therefore a significant opportu-
nity to develop an approach to design bespoke alloys on
the same timescales opened up by new manufacturing
methods2. Such alloy design is particularly challenging
as direct laser deposition has previously been applied to
only around ten alloy compositions, restricting the vol-
ume of training data available. To this end, we have
adopted a neural network driven approach3–5 that can
link data sets to allow the design of a new direct laser de-
position alloy, and experimentally verify that the physical
properties conform to the neural network predictions.

In designing an alloy that is suitable for this process,
there are many material properties that need to be op-
timized simultaneously. Previous approaches to under-
stand the compromise that must be made between dif-
ferent materials properties include ranking compositions
with a Pareto set6–8, characterizing materials with a prin-
cipal component analysis9, robust design10, and the or-
thogonal optimization of different properties2,11–14. Neu-
ral networks3–5,15–21 are a rapidly developing approach

to capture deep composition-property correlations, how-
ever contemporary approaches do not explicitly capture
the property-property correlations that will improve the
quality of predictions. Furthermore, there are correla-
tions between experimental results and computational
tools, for example the CALPHAD approach to thermo-
dynamics22, PrecipiCalc23,24, and Dictra22. These are
useful tools to predict both the phases present and more-
over their evolution. As such, when designing an alloy for
direct laser deposition it is desirable to merge all of the
data available, and in particular use the large data sets
for CALPHAD thermodynamics to guide the extrapola-
tion of the smaller data sets e.g. the processability for
direct laser deposition; this requires the ability to estab-
lish property-property relationships. Therefore, we have
developed a neural network tool3–5 that can learn both
composition-property and also property-property rela-
tionships to propose a new Ni-base alloy for use in direct
laser deposition that is most likely to satisfy simultane-
ously the target properties of processability, cost, den-
sity, phase stability, creep resistance, oxidation, fatigue
life, and resistance to thermal stresses.

Ni-base alloy are widely used in applications that de-
mand good mechanical properties at high temperature
alongside environmental resistance. The combustor liner
in a gas turbine engine is a classic example, being exposed
to temperatures of up to 950◦C and appreciable mechani-
cal stresses. Nickel-base alloys presently used in combus-
tor liner applications include HastealloyX, Haynes 282,
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Haynes 618, C263, and CM247LC. However, the com-
bustor liner is a component whose complex geometric
design would benefit from manufacture by direct laser
deposition. The alloys C263 and CM247LC have previ-
ously been trialed for direct laser deposition so we adopt
these as benchmarks. The effective design of an alloy
for direct laser deposition requires an understanding of
the relationship that exists between the alloy composi-
tion, the heat treatment schedule, processability, cost,
density, phase stability, creep resistance, oxidation, and
resistance to thermal stresses. This is a multidimensional
problem for which we have developed a neural network-
based formalism to analyze property-property relation-
ships to guide extrapolation.
The first section of this paper outlines the neural net-

work tool and specifies the chosen targets for the relevant
material properties: processability, cost, density, phase
stability, creep resistance, oxidation, and resistance to
thermal stresses. In the second section, the tool is used
to propose the composition and heat treatment regime
(Table II) for a new Alloy for Direct Laser Deposition,
“AlloyDLD”. The final section presents experimental re-
sults for the phase stability, strength, ductility, oxidation,
resistance to thermal stresses, and fatigue of the newly
designed alloy to verify the model predictions.

I. METHODOLOGY

The goal of the neural network tool is to predict the
composition and processing variables that are most likely
to produce a material that fulfills the multi-criteria tar-
get specification. The tool and methodology is a devel-
opment of the prescription in Ref.3–5. The tool comprises
predictive models for each property as a function of the
design variables, which for the Ni-base alloy presented
contain the elements {Al,B,C,Co,Cr,Mo,Nb,Ni,W,Zr}
and the heat treatment temperature. The neural network
captures property-property correlations so it can use a
property with a large amount of data to guide the ex-
trapolation of another related property with sparse data.
Critically, the tool can calculate the likelihood that a pu-
tative composition and heat treatment fulfills the target
specification, so we search design space for the alloy most
likely to meet the target specification.

A. Target specification

The goal is to design a new Ni-base alloy that offers
both improved compatibility with direct laser deposition
(more processable and giving a higher quality surface fin-
ish), and at the same time having superior high temper-
ature mechanical properties than the current generation
of Ni-base alloys that can be fabricated by direct laser
deposition. As such, the alloy must fulfill a wide rang-
ing specification, shown in Table I, to ensure that it best
meets the needs of the target application. The elemental

cost should be below 25 $ kg−1 and the density should be
below 8500 kgm−3 to be competitive compared to other
Ni-base alloys. Both cost and density are predicted us-
ing a model of the weighted commercial elemental prices
and masses. The alloys with the most suitable mechan-
ical properties are expected to be those that possess a
Ni γ-phase containing up to only 25wt% of hardening γ′

and minimal (< 1.0wt%) amounts of other deleterious
phases, giving two targets on the phase stability of the
alloy. The thermodynamic phase stability is evaluated
by a neural network trained on a database comprising
of calphad results, with data sourced from the TTNI8
database22. The use of a neural network to predict phase
stability dramatically speeds up the alloy optimization
process as it is computationally less intensive than indi-
vidual thermodynamic calculations. We also require that
the solvus temperature is > 1000 ◦C to be significantly
above the envisaged highest use temperature of 950 ◦C
and to ensure that the strengthening γ′ precipitates are
retained in the microstructure during service. It is also
essential for direct laser deposition alloys to be readily
processable and, therefore, the fractional area density of
cracks and pores must be minimized, set at <0.15% by
area. To accommodate this, a thermal resistance param-
eter is defined as σy/Eαρ where, σy is the 0.2% proof
stress, E the Young’s modulus, α the thermal expansiv-
ity, and ρ the electrical resistivity, which correlates with
thermal resistivity. To limit crack formation during pro-
cessing, the alloy must have a good thermal resistance
> 0.04KΩ−1m−1. To ensure good oxidation resistance
we require a protective, well-adhered oxidation film giv-
ing a mass gain of less than 0.3mg cm−2 at 950◦C for
100 hours. The alloy must also have good mechanical
properties to be fit for service and, therefore, targets are
set for the yield stress, tensile strength, tensile elonga-
tion, 1000 hour stress rupture, and the fatigue life that
are enumerated in Table I. The target for fatigue life was
set to be similar to other commercially available alloys as
we focus on improving other properties, particularly the
processability. Many properties including all mechanical
properties cannot be predicted reliably from first prin-
ciples, so a database of experimental results for all of
the properties as a function of composition and process-
ing variables has been compiled from the sources refer-
enced in Table I. In the experimental validation we com-
pare principally against the alloys C263 and CM247LC
as these have previously been trialed for direct laser de-
position.

B. Neural network formalism

With the individual property models and their as-
sociated targets, as specified in Table I, we now
turn to the neural network formalism. The de-
sign variables are the elemental concentration of
{Al,B,C,Co,Cr,Mo,Nb,Ni,W,Zr} and the heat treat-
ment temperature THT. However, for some properties
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Property Approach Entries Target

Elemental cost Physical Model25 <25.0 $ kg−1

Density Physical Model26 <8500 kgm−3

γ′ content calphad Model22,27,28 <25wt%

Processability Neural net 1029–33 <0.15%defects

Oxidation resistance Physical Model34 < 0.3mg cm−2

Phase stability calphad Model22,28 >99.0wt%

γ’ solvus calphad Model22,28 >1000 ◦C

Thermal resistance Neural net 693935–87 >0.04KΩ−1m−1

Yield stress at 900◦C Neural net 693935–87 >200MPa

Tensile strength at 900◦C Neural net 669335–87 >300MPa

Tensile elongation at 700◦C Neural net 224835–87 >8%

1000hr stress rupture at 800◦C Neural net 1086035–87 >100MPa

Fatigue life at 500MPa, 700◦C Neural net 1510588,89 >105 cycles

TABLE I. The table shows the approach used to predict properties, the number of experimental data entries used to train the
neural network, and the references for the source of the data. The final column shows the targets for each material property.

there is little data available, in particular there are just
ten entries for alloy processability stemming from alloys
C26332, CM247LC31, HastealloyX29, Inconel71832, and
Inconel73833. We therefore develop a neural network for-
malism that can identify the link between processability,
phase behavior, and other mechanical properties from
common compositions and then use the surplus mechan-
ical property data at other compositions to guide the
extrapolation of the processability model. Only through
this strategy is it possible to obtain meaningful predic-
tions of without recourse to detailed knowledge of the
mechanistic origins of such behavior. We first outline the
feedback loop that allows the tool to complete missing
endpoint data, before focusing in on the internal neural
network kernel.

1. Handling incomplete data

Experimental data is often incomplete – not all prop-
erties are known for every alloy, and moreover the set of
missing properties is different for each entry. However,
there is information embedded within property-property
relationships: in particular for direct laser deposition al-
loys the scarce processability data can be linked to the
common thermal properties. A typical neural network
formalism requires that each property is either an input
or an output of the network, and all inputs must be pro-
vided to obtain a valid output. We treat all properties
as both inputs and outputs of the neural network, but
for a given composition we may know some properties
but not others. We therefore develop a new neural net-
work formalism based on an expectation-maximization
algorithm90, where we first provide an estimate for the
missing data, and then use the neural network to itera-
tively improve that initial value.
The algorithm is shown in Figure 1. For any unknown

properties we first set missing values to the average of

Network at x

Have all
properties?

Use averages
x

0=x

Reached
convergence

X
n+1 = [xn + f(xn)]/2

Return f(xn)

Yes

No

Yes

No

FIG. 1. The neural network for the vector x of the design
variables and properties that has missing entries, computed
recursively over n iterations.

the values present in the data set. With estimates for
all values of the neural network we can then iteratively
compute

xn+1 = γxn + (1− γ)f(xn) . (1)

The converged result is then returned instead of f(x).
We include a softening parameter 0 ≤ γ ≤ 1, with γ = 0
ignoring the initial guess for the unknowns in x and de-
termining them purely by applying f to those entries.
However, γ > 0 will prevent oscillations of the sequence
so we adopt γ = 0.5. Typically 6 iteration cycles were
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FIG. 2. The neural network. The graphs show how the out-
puts for y1 (a) and y2 (b) are computed from all the inputs.
The given properties (red) are used to calculate the hidden
nodes (blue) to give the predicted property (green).

used to fill in missing values. The benefits of the proce-
dure to complete missing information will be seen when
we perform cross-validation testing.

2. Neural network kernel

There are multiple forms of neural network. A feedfor-
ward neural network is the paradigmatic form that uses
results from a previous layer to inform the next, a deep
neural network can build up deep correlations. There are
also more specialist capabilities for focused problem, for
example a convolutional neural network is ideal for sys-
tems that display translational invariance and a recurrent
neural network performs well on system that track time
evolution. Here, due to the nature of the data, we adopt
a feedforward neural network.
The neural network builds on the formalism used to

design nickel-base superalloys, molybdenum alloys, and
find errors in materials databases3–5. We seek a func-
tion f that satisfies the fixed-point equation f(x) ≡ x as
closely as possible for all N elements x from the data
set. Each entry x = (x1, . . . , xI) is a vector of size I,

and holds information about I = 24 distinct design vari-
ables and properties. The trivial solution to the fixed-
point equation is the identity operator, but to impute
data from other components we construct a solution to
the fixed-point equation that is orthogonal to the identity
operator.
The neural network is a linear superposition of hyper-

bolic tangents

f : (x1, . . . , xi, . . . , xI) 7→ (y1, . . . , yj , . . . , yI) (2)

with yj =
∑H

h=1 Chjηhj +Dj ,

and ηhj = tanh
(

∑I

i=1 Aihjxi +Bhj

)

.

This neural network has a single layer of hidden nodes ηhj
with parameters {Aihj , Bhj , Chj , Dj} as shown in Fig-
ure 2. Each property yj for 1 ≤ j ≤ I is predicted
separately. We set Ajhj = 0 so the network will predict
yj without the knowledge of xj . Such a neural network
can fully capture non-linear behavior, through the inclu-
sion of the tanh function. This activation function typ-
ically outperforms others (including the rectified linear
unit, logistic, and binary step) in quality of predictions
by ∼ 10% due the smoothness of the function and its
derivative. The number of hidden nodes was selected by
a five-fold cross-validation test16,19,21. Typically three
hidden nodes gives the best fitting neural network. The
weights were trained using a random walk to minimize
the least-square error of its predictions against the train-
ing data. 107 training cycles were used to reach con-
vergence. Twenty separate networks were trained on the
data with different weights3–5 and their variance taken to
indicate the uncertainty in the predictions accounting for
experimental uncertainty in the underlying data and the
uncertainty in the extrapolation of the training data91,92.
The neural network code is implemented in FORTRAN.

3. Cross-validation

To verify the accuracy of the neural network models
cross-validation was performed. The network was trained
on a randomly selected 80% of the data, and then vali-
dated against the remaining 20% of the data. The pro-
cedure was repeated five times on differently randomly
selected data to give complete coverage of the entire
data set. Cross-validation was performed on all prop-
erties, but in Figure 3(a) we highlight our results for the
yield stress. The test was performed twice: first the neu-
ral network was trained on the data containing just the
composition, heat treatment, and yield stress, and then
the predictions for yield stress were compared with the
validation data. Here we find that the typical standard
error in yield stress is 122MPa. Next a neural network
was trained on the data containing the composition, heat
treatment, and all physical properties. This allowed it to
learn property-property correlations (such as yield stress
with tensile strength, stress rupture, and phase behavior)
during training. This also enabled the neural network to
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FIG. 3. (a) Cross-validation test for experimental yield stress
(x-axis) with predicted yield stress (y-axis). The green line
shows the expected result for a perfect prediction. The pink
points show the yield stress predictions when trained with
just composition and heat treatment information, the purple
points show the predictions when trained with both composi-
tion and also other physical properties. (b) Cross-validation
test for yield stress with number of hidden nodes in the neural
network.

learn about the complex composition-yield stress corre-
lations by extrapolating based on related properties at
other compositions.

During validation we provided the network with just
the composition and heat treatment as inputs and the
yield stress predictions are shown in Figure 3(a). We
find that the typical standard error in yield stress is just
37MPa, an improvement by over a factor of three. We
follow Refs.16,19,21 and adopt the coefficient of determina-
tion as a dimensionless measure for quality of fit, allowing
us to compare and compute the fit for different quantities
with different units. We achieve a coefficient of determi-
nation R2 = 0.96. An additional test can be performed
on the ability to extrapolate in chemical space. We split
the data set into a training set of alloys with > 1wt% of
Aluminum and validated on those alloys with < 1wt% of
Aluminum. We achieved a coefficient of determination
R2 = 0.89, confirming the ability to extrapolate into new
chemical space.

A similar level of accuracy is achieved during cross-
validation testing for other physical properties with an
average coefficient of determination R2 = 0.95. The
lowest three properties with the lowest coefficient of de-
termination were processability with R2 = 0.83, tensile
elongation with R2 = 0.86, and tensile strength with
R2 = 0.92, which are also the properties with the fewest
data points. On the other hand cost, and density were
both perfectly modeled with R2 > 0.995. Finally, we
also tested placing the commercially available C263 and
100 nearest materials in composition space into a vali-
dation data set. The properties of these materials could
be predicted with R2 = 0.94, confirming the ability to
extrapolate in composition space and ultimately design
new materials.
Cross-validation was also used to verify the number of

hidden nodes adopted. In Figure 3(b) we study the how
the coefficient of determination for fitting the yield stress
data changes with number of hidden nodes. With too few
hidden nodes the fit is poor as the model cannot prop-
erly fit the data, and with too many hidden nodes the
model over fits and accuracy falls. The optimal number
if hidden nodes to fit the yield stress data is three.
Finally, the ability of the neural network to understand

the uncertainty in its predictions was tested. Specifically,
comparison was made between the standard error pre-
dicted by the neural network and the actual difference
from unseen validation data, which on average should be
unity. We find that the root mean square average ratio is
1.05 with standard deviation 0.12, confirming the ability
of the neural network to understand the accuracy of its
predictions.

C. Optimizing the material properties

In this approach, the individual material properties are
converted into a single merit index L = Φ[Σ−1(V −T)]
that describes the likelihood that the material proper-
ties (V) satisfy the design criteria (T). Here Φ is the
multivariate cumulative normal distribution function and
Σ is the covariance matrix93. Combining the individual
property likelihoods enables an estimate to be made of
the likelihood that the alloy will fulfill the whole speci-
fication. Therefore, the use of likelihood also allows the
tool to explore and select the ideal compromise between
material properties, which is inaccessible with methods
that do not account for likelihood, such as a principal
component analysis9 and robust design10, and the neu-
ral network allows us to capture deeper correlations than
linear regression methods such as in principal component
analysis9.
As well as predicting material properties, the tool must

vary the composition and processing variables to opti-
mize the properties against the set targets. Previous
optimization techniques included running over a prede-
termined grid of compositions, and then sieving them
with trade-off diagrams13, or a Pareto set6–8. How-
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Optimal composition (wt%) and heat treatment

Cr 19.0±0.4 Co 4.0±0.3

Nb 3.0±0.1 W 1.2±0.4

Mo 4.9±0.2 Al 2.9±0.2

C 0.04±0.01 B 0.005±0.002

Zr 0.045±0.01 Ni Balance

THT/
◦C 1230±20

TABLE II. The composition of proposed material AlloyDLD
(composition is in weight%) and the heat treatment. The
design tolerance shows all design variables that are predicted
to fulfill the target specification.

ever the expense of these methods scales exponentially
with the number of design variables. Another approach
is to use genetic algorithms94,95, but this approach is
not mathematically guaranteed to find the optimal so-
lution96,97, and it displays poor performance in high di-
mensional problems96,97. Here we maximize the loga-
rithm of the likelihood log(L) to ensure that in the region
where the material is predicted to not satisfy the speci-
fication the optimizer runs up a constant gradient slope
that persistently favors the least optimized property. The
tool searched high-dimensional composition space with
bounds on elemental composition of 5% ≤ Cr ≤ 30%,
0 ≤ {Nb,Mo,Co,W,Al} ≤ 8%, 0 ≤ {C,Zr,B} ≤ 1%, and
processing variable 900◦C ≤ THT ≤ 1300◦C, taken from
the limits of the training data. We explore the design
space with a random walk that uses a step length com-
parable to the accuracy with which a material could be
manufactured. This is 0.1wt% for the entire composition
excluding the possibility of microsegregation. The tool
typically search over ∼ 108 sets of design variables in
∼ 1 hour to explore the space and search for an optimal
material.

D. Alloy proposed

With the neural network tool established, a new Ni-
base alloy was designed to fulfill the targets in Table I,
and the properties of the alloy subsequently verified by
experiment. The neural network proposed the compo-
sition and processing variables for AlloyDLD, shown in
Table II. This alloy is predicted to have a 30% likelihood
of meeting the target specification. The composition is
quoted with a range of concentrations that were predicted
to satisfy all of the target criteria. AlloyDLD notably has
high levels of Cr, at 19wt%, and no Ti to ensure good
oxidation resistance. However, inevitably, the neural net-
work code must make a compromise between the differ-
ent properties of an alloy. This can be directly visualized
from the predicted properties and an example is shown in
Figure 4, which illustrates the probability of fulfilling the
design criteria as the targets for thermal resistance and
phase stability are changed. The probability is zero in the
top-left hand corner of the graph at low phase stability
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FIG. 4. (Color online) The probability of an alloy fulfilling
the design criteria as the targets for the thermal resistance
(y-axis) and phase stability (x-axis) are varied. The white
shaded areas show regions that fail to meet thermal resistance
and phase stability targets. The color of shading shows the
likelihood of exceeding all of the targets, following the scale
on the right. The white circles show the proposed AlloyDLD
and existing alloy C263.

and high thermal resistance denotes the physical impos-
sibility of an alloy existing with these properties as the
targets for thermal resistance and phase stability are too
ambitious. The proposed alloy is the one most likely to
fulfill the targets and is highlighted as it lies at the center
of the largest region of highest likelihood. The rapidly
varying likelihood of satisfying all of the targets reflects
how other properties change markedly. This variation is
similar to that seen in the design of other Ni-base super-
alloys3 and Mo-base alloys4. The understanding of this
landscape of likelihood also allows an engineer to select
the ideal compromise for their application, for example
with the aid of an Ashby plot98.

II. MANUFACTURE

The proposed AlloyDLD is predicted to fulfill the tar-
get specification. However, experiments are required to
verify its performance. A 30kg ingot of AlloyDLD was
prepared by vacuum induction melting. This was then
subjected to gas atomization and then sieved to produce
a powder with a particle distribution that varied between
10 and 100µm, with a mean value of 30µm. Test pieces
were manufactured using direct laser deposition with a
range of energy densities, scan speed, and scan spacing
combined into an “exposure parameter”.
To measure the area fraction of defects shown in Fig-

ure 7, extensive micro-structural analysis was carried out
on selected samples using scanning electron microscopy
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FIG. 5. (Color online) (a) The thick lines show the mass gain
at 950◦C with time of the AlloyDLD, CM247LC, and C263.
The shaded purple area denotes the range of neural network
predictions for the mass gain of AlloyDLD. (b) The points
show the thermal resistance of samples of AlloyDLD and C263
printed horizontally (solid circle and diamond points respec-
tively) and vertically (open circle and diamond points respec-
tively). The neural network predictions are shown by the
solid lines with uncertainty denoted by the shaded region. (c)
The 105 cycle fatigue stress with temperature for AlloyDLD
printed horizontally (solid circle points) and vertically (open
circle points). (d) The low cycle fatigue cycles with tempera-
ture for AlloyDLD printed horizontally. In all graphs the gray
shaded region denotes the target range.
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FIG. 6. (Color online) (a) Secondary electron micrograph
image for AlloyDLD. (b) Representative geometry of a sample
combustor manufactured by direct laser deposition.

(SEM). Samples were analyzed in their horizontal and
vertical planes, parallel and perpendicular to the build
plane respectively. Using the exposure parameter with
the lowest area fraction of defects, sample blanks were
built for property testing. The samples were solution
heat treated at 1230◦C (for 2 hours) followed by a precip-
itate heat treatment (20 hours at 800◦C).

III. RESULTS

The experimental properties of AlloyDLD were as-
sessed in two stages: first the physical properties of Alloy-
DLD were studied and compared to other alloys includ-
ing CM247LC, and C263. Secondly, the effect of varying
the heat treatment temperature, THT, on the properties
of AlloyDLD were studied to confirm that the optimal
processing variables had been selected.

A. Physical properties

Figure 6(a) shows a secondary electron micrograph of
AlloyDLD. The presence of a γ matrix containing ∼ 15%
γ′ precipitates is consistent with the neural network pre-
diction of ∼ 17% γ′ phase. Three heat treatment tests at
(700◦C, 800◦C, 900◦C) for 1000 hours showed only slight
γ′ phase evolution and no deleterious phases, confirm-
ing the phase stability. Figure 6(b) also shows a sample
combustor liner formed by direct laser deposition out of
AlloyDLD. The surface finish achieved is consistent with
other alloys suitable for direct laser deposition; this is fur-
ther evidence that AlloyDLD is suitable for direct laser
deposition.
Oxidation properties were measured by preparing sam-

ples of the test alloys measuring 30×10×0.5mm, with a
4000 grit surface finish. For each sample, a hole was spark
eroded and the sample was hung on a fine mass balance
that can weigh to an accuracy of 0.015mg. The sample
was exposed to an area of the furnace where the tempera-
ture was measured to be 950±2◦C and the mass change of
the sample was then recorded every 60 s, or every 0.12mg
mass change for a duration of 100 hours. In Figure 5(a)
it can be observed that the mass gain matches well with
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the neural network prediction, improves on CM247LC
and is significantly better than C263. This confirms that
AlloyDLD fulfills the target specification of having good
oxidation resistance.
The thermal resistance was calculated as a function

of temperature for both horizontally and vertically built
samples, and the results obtained are compared with
the neural network prediction in Figure 5(b). This was
achieved by measuring properties defined in the ther-
mal resistance parameter separately. The properties are
similar for the horizontally and vertically printed sam-
ples, confirming good material homogeneity. The neural
network predictions for the thermal resistance of C263
match well with the experimentally measured values, and
moreover the neural network predictions for AlloyDLD
agree well with experiment. We note that for AlloyDLD
the experimental prediction at 900◦C has slightly lower
thermal resistance than predicted by the neural network.
However, it is only slightly more than one standard de-
viation out (where 30% of measurements are expected to
be), and this is at the upper bound of temperatures that
the model can be applied at, where its predictions can be
expected to be less accurate. The experimental results
confirm that AlloyDLD has a higher thermal resistance
than C263. For CM247LC, the mechanical properties
and thermal resistance cannot be meaningfully compared
because it is difficult to process using direct laser deposi-
tion resulting in cracking throughout the alloy. This has
been suggested due to residual stresses throughout the
build process.99

In Figure 5(c) we show the high (105) cycle fatigue for
a machined sample of AlloyDLD between 0 and 500Mpa.
The similarity of the results for horizontally and ver-
tically printed samples show good homogeneity of the
samples. In Figure 5(d) it can also be observed that for
notched samples measured in load controlled fatigue at
600 MPa between room temperature and 800◦C the num-
ber of cycles to failure measured in experiment matches
well with the theoretical prediction. To probe the creep
resistance we measured the 1000 hour stress rupture at
800◦C for a sample printed in the horizontal direction,
recording 105MPa, surpassing the target of 100MPa.

B. Defects

Sections of the assembled geometry were assessed us-
ing a scanning electron microscope to evaluate the area
fraction of defects within the material. Figure 7(a) shows
how the defect content of the material varied with the ex-
posure parameter. A higher exposure parameter led to a
lower area fraction of defects. From this it can be inferred
that a lower scan spacing, scan speed, and energy density
lead to a lower proportion of defects in the material. For
an alloy that is subjected to three-dimensional loading it
is important that the area fraction of defects shown in
is kept to a minimum in both the horizontal and verti-
cal directions so that the mechanical properties are not
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FIG. 7. (Color online) (a) Area percentage of defects in the
AlloyDLD with exposure parameter. The solid circles are for
samples printed horizontally and the open circles are for sam-
ples printed vertically. The gray shaded region denotes the
target range. (b) Elongation with heat treatment tempera-
ture measured at 780◦C (open magenta circles) and 900◦C
(closed pink circles). (c) Yield stress with heat treatment
temperature measured at 780◦C (open magenta circles) and
900◦C (closed pink circles). The gray shaded region denotes
the range of recommended design heat treatment tempera-
tures, and the red vertical line denotes the solidus tempera-
ture. We also show two results for C263 (open diamonds at
780◦C and closed diamonds at 900◦C).

compromised. The area fraction of defects for horizon-
tally and vertically printed samples is shown to have a
similar correlation with the exposure parameter, showing
that the area fraction of defects can be minimized to a
low level.
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C. Heat treatment

The samples were solution heat treated for 2 hours
followed by a precipitate heat treatment at 800◦C for
20 hours. To better understand the choice of solution
heat treatment temperature, THT, the variation of duc-
tility with THT is shown in Figure 7(b). The ductility
was measured with the sample held at two different test
temperatures: 780◦C and also 900◦C, it rises rapidly with
THT to a plateau at an optimal value in the region of
THT = 1230 ± 20◦C, as specified. It is not possible to
increase THT above the solidus temperature of 1262◦C,
so the heat treatment has been specified to be as near
to the solidus as practically possible. Figure 7(c) also
shows the variation of yield stress with solution temper-
ature. This was measured on a machined test sample
at a strain rate of 0.001s−1 with a 15 minute dwell at
the testing temperature. Here, the variation is smooth,
but again shows that the selected solution temperature
gives the optimal values for yield stress. AlloyDLD has
a higher yield stress than C26372 at both test tempera-
tures, confirming its real-life utility. The study confirms
that the neural network has selected the optimal process-
ing conditions for AlloyDLD.

IV. CONCLUSIONS

A neural network was used to propose the Ni-base
AlloyDLD most likely to simultaneously fulfill thirteen
physical criteria (processability, cost, density, phase sta-
bility, creep resistance, oxidation, fatigue life, and resis-
tance to thermal stresses) given the experimental and
computational data available. The neural network was
guided in its extrapolation of ten data points for pro-
cessability by using physical data for other properties.
AlloyDLD has been experimentally verified to have phase
behavior, processability, oxidation resistance, thermal re-
sistance, yield stress, fatigue life, and ductility properties
that match the neural network predictions and are bet-
ter tailored to the target application than other available
commercial alloys. With high levels of processability,
oxidation resistance, thermal resistance, and good high-
temperature mechanical properties, AlloyDLD possesses
the properties to be used as a combustor liner manufac-
tured by direct laser deposition.
The authors acknowledge the financial support of
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