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Modern Methods
Increased implementation of deep learning is forecast to 
introduce new opportunities to the drug discovery arena  
and add value to data held by pharmaceutical companies

By Dr Tom 

Whitehead  

at Intellegens

Early-stage drug discovery has 

been an enthusiastic adopter of 

computationally aided design in recent 

years, with computational visualisation 

and predictions becoming integral 

to the way chemists work. This 

forward-looking approach to applying 

technology in existing workflows 

makes drug discovery an important 

field for the ongoing deep learning 

revolution, where new and innovative 

tools can make an important 

difference to real, relevant projects.

A key application of computational 

measures in drug discovery has been 

in the development and utilisation 

of quantitative structure-activity 

relationship (QSAR) models. These 

models take features of a compound, 

known as descriptors, and match them 

to the compound’s activity in an assay 

of interest.  Typically, the compound 

descriptors capture both whole-

molecule properties (such as the 

molecular weight, topological polar 

surface area, and McGowan volume [1-

2]), as well as sub-structural fragments. 

The activity in the chosen assay is then 

expressed as a mathematical function 

of the descriptors. Many forms for 

the function have been tried over the 

years, from simple linear regression 

fits to machine learning methods, 

such as support vector machines and 

random forests (3-4). The predictions 

have added great value to the drug 

discovery process, serving to give 

quantitative confirmation to the 

intuition and designs of chemists.

Deep Learning

In recent years, one of the most 

important trends in machine learning 

has been the development of ‘deep 

learning’, where multiple layers of 

data abstraction are composed 

together to form very complex and 

powerful functions of the input 

data (5). In image recognition and 

time-series processing tasks, deep 

artificial neural networks now provide 

state of the art solutions in the form 

of convolutional neural networks 

(CNNs) and recurrent neural networks 

respectively. More recently, deep 

artificial neural networks have also 

been used to construct QSAR models, 

but this has provided mixed results. 

At a recent conference in Switzerland, 

Robert Sheridan from Merck reported 

that deep-learning QSAR models 

offered a negligible improvement 

over traditional approaches across 30 

representative QSAR datasets (6). This 

serves to highlight that deep learning 

is not a panacea and adds most value 

when applied to problems where 

conventional techniques are unable  

to work effectively at all.

Some of the challenges with applying 

deep learning to drug discovery are 

features specific to the pharmaceutical 

domain. In deep learning, data is king, 

but, in drug discovery, experimental 

measurements are often difficult 

and expensive to obtain, resulting in 

limited data on the most interesting 

assays, which complicates the training 

of accurate deep learning models. 

While generic image recognition CNNs 

are frequently trained on hundreds 

of millions of labelled images, even 

large pharma companies typically 

only have a few million compounds 

in their corporate collections, most 

measured against a handful of assays. 

Complicating matters further is that 

these measured assays are different for 

different compounds; no compound 

has been measured in every assay 

ever devised, and no assay has been 

run for every compound. The public 

ChEMBL database only has activity 

measurements for around 0.07% of 

the possible compound/assay pairs it 

contains, and pharma company data is 

frequently similarly sparse. This sparsity 

of data makes it difficult for deep 

learning to capture the relationships 

between different assays, a problem 

which is only just beginning to be 

overcome by modern approaches.

A further challenge with applying 

deep learning to drug discovery 

is the variability of the data that is 

available. Biological data is inherently 

noisy and uncertain, with three-fold 

variability between results from the 

same compound in the same assay 

not uncommon (7). This makes it 

impossible for deep learning models 

to come up with definitive predictions 

for assay results, which leads to 

it being vitally important for the 

uncertainties in predictions to be well 

captured. However, this, in turn, can 

lead to complications in analysis and 

interpretation of results by chemists. 

Deep Learning in Practice

Despite these challenges, the rise 

of deep learning provides a host of 

opportunities for expanding the toolkit 

of drug discovery. The first opportunity 

for deep learning to prove its worth 

is through the application of multi-

target modelling, by constructing a 

single deep learning model that can 

simultaneously predict the results 

of multiple assays. Multi-target 
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modelling teaches the algorithm a 

more profound representation of 

the chemical properties and their 

relationship to assay results, enabling 

the transfer of learnt correlations 

between assays. These multi-target 

models extend the concept of a 

QSAR model and offer the immediate 

advantage of automatically 

generating selectivity profiles,  

rather than just activity levels.

Further applications of deep 

learning will add significant value 

to the data that pharma companies 

already hold. Multi-target modelling 

allows chemists to accurately and 

confidently ‘fill in the gaps’ in the 

sparse databases of compound/assay 

data, imputing values for what would 

be measured in each assay for each 

compound, were the experiment 

to be carried out. These predictions 

can be used directly to inform the 

selection of hits for further analysis, 

and, as the model predictions are 

validated in experiment, the data  

can be fed back into the algorithm  

to create improved models of 

the area of chemical space most 

interesting to the chemist. An 

entirely automated procedure 

is also possible where the deep 

learning algorithm proposes the 

experiment that will most improve 

its estimates for a target of interest, 

iteratively converging to increasingly 

accurate predictions. One of the 

most interesting applications of this 

automated data prediction capability 

is in the hunt for false negative assay 

results. High-throughput screening 

frequently, but incorrectly, identifies 

active compounds as inactive, and 

the ability to concretely identify  

this chemical ‘dark matter’ would 

open up new opportunities  

and understanding (8).

The next step in the cycle of 

automation is for the deep  

learning algorithm to be able to 

propose entirely new compounds 

for investigation, rather than simply 

making predictions for existing 

compounds. In other fields, generative 

adversarial networks (GANs) have 

had reasonable success in generating 

ideas that pass for human-generated, 

including recently creating artwork 

that sold for over US $400,000 at 

Christie’s (9). GANs work by setting 

up two deep learning models, one of 

which creates suggestions for new 

ideas, be they artworks or chemical 

compounds, while the other model 

then tries to distinguish from real,  

pre-existing data. GANs are still in  

their infancy in drug discovery, but 

they offer the promise of automated 

design and optimisation of 

compounds in early-stage projects.

Discovery Developments

Despite these leaps forward in the 

abilities of deep learning algorithms  

to generate and test chemical 

compound proposals, deep learning 

methods are unlikely to entirely 

supplant living, breathing chemists. 

Although machine learning enables 

very rigorous and detailed analyses 

of immediate, concrete problems, 

no machine learning approach 

developed so far can match the 

human ability to take a strategic 

overview of a research project, 

understanding and directing 

multiple different strands in pursuit 

of separate, overlapping objectives 

simultaneously. This has resulted 

in the concept of a ‘centaur’: 

cooperation between humans 

and machine learning algorithms, 

with the human providing high-

level direction to advanced deep 

learning methods. In chess, which 

was long a leading environment 

for the development of machine 

learning methods, a concept has 

been developed by Garry Kasparov 

called ‘advanced chess’, where 

human chess players are advised by 

advanced chess programs, with the 

combination of player and algorithm 

able to outperform the leading chess  

software alone (10). A similar 

development is likely to play out 

in drug discovery, where chemists 
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               Further applications of deep learning will  

add significant value to the data that pharma  
companies already hold
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supported by powerful deep learning 

approaches will be more successful 

than either the algorithms or the 

chemists alone.

 

The field of deep learning has  

much to offer early-stage drug 

discovery, through the development 

of more accurate models of chemical 

activity and selectivity, the triaging 

and cleaning of existing data, 

and even the suggestion of new 

experiments and compounds. 

Challenges are still present, 

particularly in the quality  

and volume of data available  

for training modern deep  

learning methods, and, in  

these areas, drug discovery  

also has much it will be able to 

give back to the development of 

deep learning algorithms, through 

increased resilience to noise and 

sparsity in training data. The  

journey is only just beginning for 

deep learning in drug discovery,  

but the future looks set to be  

productive and engaging  

for all involved.
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