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Executive Summary 
 
Identifying the optimal composition or chemistry and the ideal processing parameters 

to achieve commercial performance goals as quickly as possible is the key objective 

in the design of formulations, chemicals, materials, and biopharmaceuticals. 

Traditional approaches suffer from key disadvantages: expert-driven design is labour-

intensive and time-consuming; single-factor analysis misses the effects of correlations 

between factors; and conventional Design of Experiments is exhaustive but focused 

on covering the design space rather than rapidly achieving performance goals.  

Machine learning identifies improved products and processes much faster than 

traditional approaches, by focusing experimental effort directly on those routes most 

likely to be successful. With the experimental costs associated with a typical R&D 

project in industry running to hundreds of thousands of dollars, a 50-80% reduction in 

the number of experiments required can deliver a very significant return on investment. 

 

 

Approaches to experimental design 

The goal of R&D is to identify new products to meet 

commercial needs as quickly and efficiently as 

possible. Experimental campaigns to optimise 

formulations, chemistry, materials, or processes can 

consume vast quantities of time and resources. The 

development of new methodologies that accelerate 

discovery and design is therefore crucial for 

achieving time efficiency and cost reductions. 

Historically, such design has been driven by the knowledge of domain experts, who leverage 

years of experience to intuit the next experiments to carry out. This enables experts to direct 

experimental campaigns but has several limitations for commercial development: the 

bottleneck of single experts’ availability, variability across an organisation as different experts 

make inconsistent decisions, and the potential for company expertise to be lost when valuable 

members of staff move on.  

The road to more reproducible, methodical experimental design begins with systematically 

optimising single factors in the so-called COST (Change One Separate variable at a Time) 

framework. This approach requires the identification of the most important factor for a given 

system, with this factor then optimised and all other factors held constant. This procedure is 

repeated for the next most important factor, with all other factors held constant, and so on. 

Experimental campaigns to 

optimise formulations, 

chemistry, or materials 

consume vast amounts of 

time and resources  
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Although COST is more systematic than expert-driven design, it is unsuitable for complex 

systems where there are interactions between the factors or nonlinear responses. 

Conventional Design of Experiments (DOE) methodologies attempt to overcome the 

shortcomings of the COST approach. DOE aims to provide an efficient coverage of the design 

space to build understanding of the way responses change with each factor. The conceptually 

simplest method is a ‘full factorial’ experimental design, where N levels for each of F factors 

are considered, and all possible combinations of each level of each factor are measured: this 

is shown in Figure 1 for N=4 and F=2. This provides an exhaustive coverage of the 

experimental possibilities over those factors considered, and often enables powerful insights 

into the relationships between each factor (and their combinations) and the properties of 

interest. However, a full factorial design requires FN experiments, which with even a moderate 

number of factors becomes prohibitively expensive. Machine learning, as we shall see, 

instead aims to identify experiments that find the quickest route to the optimal experiment, 

achieving project goals with substantially less testing (Figure 1). 

 

Figure 1. Traditional Design of 

Experiments aims to cover the 

formulation space (blue points), here 

requiring 16 experiments, whereas 

machine learning-driven adaptive 

experimental design (black line) finds 

the quickest route to the optimal 

formulation (orange star) in as few 

experimental cycles as possible, here 

requiring only 8 experiments. 

Of course, there are more advanced traditional DOE techniques that cover the design space 

while requiring fewer experiments. One popular approach is Latin Hypercube sampling, where 

instead of every combination of factors being used, only one measurement is proposed per 

level for each factor, ensuring that this is achieved simultaneously for all factors. These may, 

however, risk sacrificing accuracy in the search for the optimal solution (Figure 2). 

 

Figure 2. Latin hypercube sampling of 

two factors, showing that for each 

level of each factor, only one 

measurement is proposed. This can 

provide a more efficient coverage of 

the formulation space than a full 

factorial design, although is not as 

effective at identifying global optima 

as machine learning driven adaptive 

experimental design. 
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Other popular methods include Box-Behnken, Plackett-Burman and central composite 

designs, Taguchi arrays, and definitive screening designs.  

There is another factor to consider when comparing traditional DOE with machine learning. 

DOE works well for understanding linear effects in a system, and some DOE methods are good 

for quadratic (second order effects). But DOE is not good for studying higher-order, non-linear 

effects. Yet most real experimental problems are characterised by such interactions. 

Exploring such spaces is another strength of machine learning, as the ML algorithm is able to 

understand and dynamically leverage relationships between the inputs, in contrast to the more 

static approach of traditional DOE. 

  

Figure 3. Machine learning allows for more accurate exploration of a design space with non-

linear effects on the properties of interest. The figure illustrates how machine learning can 

navigate a complex design space to guide an experimental programme to its goal. 

The key point is that all of the traditional DOE approaches fundamentally attempt to answer 

the same question: how to sample the design space most efficiently to understand the way 

that each factor influences each response. But this is not the most commercially relevant 

question for experimental design: instead of covering all available options, the true aim of a 

design project is to find the most effective product in as few experiments as possible. 

 

Adaptive experimental design 

Using machine learning we can shift the frame of 

experimental design from attempting to cover the 

design space to directly attempting to find the 

optimal formulation, chemical, material, or process 

to achieve a given project’s goals. By exploiting the 

predictive power of a machine learning approach, 

we can select which experiments to carry out by 

determining which measurement will both be most 

likely to succeed against the project’s goals and also will help improve the machine learning 

Machine learning can 

determine which 

experiments are most likely 

to succeed 
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model itself, resulting in a virtuous cycle of a rapidly improving machine learning model, 

suggesting increasingly performant new products. 

 

Figure 4. The performance of a variety of standard Design of Experiments approaches at 

finding the optimal point of a 5-factor analytic function. The vertical axis shows how far the 

best result is from the optimal value, with the horizontal axis showing how many experiments 

are required to achieve this result. Alchemite™ machine learning (dark line) achieves 

comparable accuracy to the best methods but needing ten times fewer experiments. 

Figure 4 shows the performance of a variety of standard Design of Experiments approaches 

at finding the optimal point of a simple 5-factor analytic function. Almost all of the standard 

approaches achieve comparable results, finding similarly good optimal values in similar 

numbers of experiments.  

Alchemite™ machine learning-driven adaptive experimental design finds better results 

quicker, requiring, in theory, ten times fewer experimental measurements to find formulations 

much closer to the optimal result than those identified by the standard Design of Experiments 

approaches. In discovery or development projects, this translates directly to many-fold 

savings in the time and resources required to achieve project goals, improving efficiency and 

productivity of the R&D process.  

The Alchemite™ approach not only offers improved solutions at greater speed, but is also 

capable of dealing with the sparse and noisy data that is typical of experimental datasets. By 

predicting and mapping the design landscape with associated confidence levels, the 

approach enables scientists and engineers to effectively identify the next best experiments to 

run to most rapidly succeed in discovery projects. 
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Case study examples 

Figure 4 showed a theoretical comparison of adaptive and traditional DOE, proposing a 90% 

advantage through the machine learning approach.  What is achievable in practice? 

Johnson Matthey, in their studies of catalysis formulations using Alchemite™, have reported 

halving of experimental workload in one project and identification of a new experimental route 

in another project that would lead to a five-fold reduction in experimental workload. 

The Advanced Manufacturing Research Center (AMRC) found that use of Alchemite™ to plan 

a test programme for manufacturing research in composite tooling enabled them to achieve 

project objectives with 80% fewer tests. 

Domino Printing Sciences also saw a dramatic reduction in the amount of experimentation 

needed in an ink reformulation project. They were able to find new formulations after two 

batches of experiment on 12 formulations proposed by Alchemite™. Traditional DOE would 

have required 1,800 formulations. 

More on these and other case studies can be found at intellegens.com/casestudies. 

The exact savings in time and cost in an 

experimental programme taking an adaptive DOE 

approach will vary based on the details of the system 

being studied and project objectives. But, based on 

their experience of many such projects, including 

those above, the Intellegens team expects savings in 

the range 50-80%. 

 

 

Typical savings in 

experimental time and cost 

are in the range 50-80%  
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Guide your experimental design using Alchemite™  

With the Alchemite™ Analytics platform, you transform R&D with machine learning by easily 

experimenting, modelling and visualising real-world data. Choose the best experiment to run 

next by quickly assessing the accuracy and confidence levels of results. 

Some of the advantages of Alchemite™ machine learning versus traditional DOE are shown in 

Table 1. Alchemite™ also has several advantages compared to other machine learning 

methods, notably: 

§ It can build an ML model based on sparse, noisy data (as is often found in 

experimental datasets). Many ML methods fail in this situation. 

§ It has highly accurate methods for quantifying uncertainty in its predictions. This is 

important for Adaptive DOE in identifying experiments most likely to succeed. 

Table 1. Alchemite™ vs traditional DOE 

Limitation of traditional DOE Alchemite™ approach 

They still result in a high experimental 

burden 

Suggests the most important experiments, 

resulting in 50-80% reduction in the number 

required  

It’s hard to address cross-correlations; 

they often model one parameter at a 

time 

ML model captures complex, high dimensional, 

non-linear relationships, accurately mapping 

design space for materials, formulations, 

chemicals, or processes. 

Can require statistical expertise Method learns from the data provided to build a 

model – the user does not need statistical 

knowledge to set it up 

Maps out a set of experiments, but the 

analysis and understanding of results is 

a separate task 

Creates a machine learning model as part of the 

process and this can be used to understand 

what drives specific properties, and as a 

predictive tool  

 

Finally, although adaptive DOE is a powerful machine learning-based evolution of traditional 

DOE methods, the latter remain widely-used and valuable in many scenarios. The approaches 

can be regarded as complementary, as indicated in Table 2.  
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Table 2. Complementary methods 

Traditional DOE Alchemite™  

Use it to explore all options Use it to efficiently achieve a goal 

Use it to gather first data on a new problem Use it to gain value from existing data, 

including merging data from previous 

projects 

All experiments usually run at once Typically iterate through experiments 

Useful if you require a guarantee on the 

number (not the quality) of experiments 

Aim for the highest quality experiments 

Uses / requires advanced statistical 

knowledge 

Pose question, get an answer in the domain 

language (no statistical / ML knowledge 

needed) 

 

 

About Intellegens 

Our mission is to be the leading machine learning solution for real-world, sparse and noisy 

data problems in industrial R&D and manufacturing processes. Our focus is on making it easy 

to apply machine learning to accelerate innovation. Alchemite™ originated at the University of 

Cambridge and development is on-going at Intellegens, in close collaboration with our 

growing community of Alchemite™ customer organisations. These represent sectors 

including alloys, additive manufacturing, aerospace, batteries, ceramics, chemical processes, 

composites, consumer products, cosmetics, drug discovery, energy, food and beverage, 

formulated products, paints, plastics, and printing technology. 

www.intellegens.com  |  info@intellegens.com  |  @intellegensai 


