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Combining machine learning with
physics and chemistry models

Executive summary

Physics and chemistry simulation and analytical methods are now standard tools in

the development of improved materials and formulations, and the use of machine

learning (ML) is increasing. Both classes of method have advantages and drawbacks.

In this project, we developed a framework that allows such methods to be combined

and proved the effectiveness of such integration with case studies using CALPHAD

and molecular descriptors calculated using quantum chemistry methods from SMILES

strings. This enabled ‘feature engineering’ for the ML methods, delivering

improvements for measures of model quality when compared to models trained on the

original datasets, reflecting the ability to make more accurate predictions. The new

descriptors were shown to be important for achieving specific model targets as well as

aiding in data visualisation via dimensionality reduction. The developed solution is

easily extendable and flexible, and allows the integration of new scientific methods

beyond the scope of the project. Future work will focus on further collaboration with

partners to improve model performance to help achieve the desired Materials 4.0

roadmap set by the Henry Royce Institute.
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Introduction

Historically, the design of new materials and formulations has been driven by real-world
experimentation and iteration. As materials research continues to evolve and adopt new
tools, a paradigm shift is taking place that prioritises the use of digital methods to aid in
optimising processes and improving materials. A wide range of simulation and analytical
methods are now very well established, applying fundamental physics or chemistry
knowledge to compute structure or behaviour. There is also increasing interest in applying
machine learning techniques, which do not rely on physical science models, but instead
learn from available data to construct their own model of the system being studied.
Alchemite™, the novel machine learning (ML) method developed by Intellegens, is one such
tool being adopted by industry leaders [1] [2].

The integration of varied predictive modelling tools with real-world data is a key
characteristic of the Industry 4.0 vision for digitalisation of the manufacturing sector [3]. The
Henry Royce Institute has produced its Materials 4.0 Roadmap [4], which provides a similar
vision for the materials community. The Materials Challenge Accelerator Programme
(MCAP) is a round of funding hosted by Royce to develop solutions against their roadmaps,
including this pursuit of Materials 4.0. This white paper outlines results from an MCAP
project, headed by Intellegens, that focused on the integration of machine learning with
physics/chemistry methods. Intellegens set out to develop a prototype product that creates
a reusable framework for enabling such integration while also demonstrating the
effectiveness of combining models for two specific use cases.

The Problem: Limitations of different model types

Physics or chemistry models based on analytical equations or simulation methods often
provide researchers with invaluable insight and predictive power, but they are not without
their drawbacks. Setting them up and analysing the results can be complex. They may
include assumptions that are hidden to the user, or which exclude factors that are in fact
important in the system being studied. They can be computationally expensive and
time-consuming to run. And, if you need to develop a new method or adapt an existing one
for the system you are studying, this can be a major research project in itself.

Machine learning models avoid many of these drawbacks by generating insights quickly
from the available data with no assumptions or pre-conceptions. This can be a very powerful
tool in the context of material and formulation design. But ML also has its limitations. One
constraint is that training ML models tends to fail where the data contains lots of gaps (is
sparse) or where the data is noisy. The Alchemite™ method is built to overcome this
limitation. It can be trained using sparse and noisy datasets that are typical of real-world
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experimental and process data [1]. However, in common with all other ML methods, it can
only learn relationships from the data provided. Useful relationships that are established
domain knowledge may not be detected, or may not be fully exploited, perhaps because the
dataset is too small for them to be highlighted or is missing key information [5].

The Solution: Integrating chemistry and physics
methods with ML

In this project, we set out to address some of these limitations of physics, chemistry, and ML
models by creating a framework to use them in combination. We tested our approach using
two different physical science models together with Alchemite™ machine learning. In both
cases, we used the physical science models to enrich a dataset, adding additional input data
that better describes the system (in machine learning terms, ‘features’) before the
Alchemite™ analysis. In the machine learning world, this approach is known as ‘feature
engineering’. Note that there are many alternative approaches to combining methods. For
example, for a very computationally-expensive physics method, we might first use ML to
narrow down a list of candidate systems to those most likely to succeed and then only
simulate those.

CALPHAD

CALPHAD (CALculation of PHAse Diagrams) [6] has over 50 years of formula development
by experts in the field of alloy manufacturing and can be used to predict thermodynamic
information for materials. In our project, the open source pycalphad libraries [7] were used to
generate new columns that enriched a dataset by describing the phase transitions for the
alloy at different temperatures, pressures, and composition balances.

Molecular descriptors from SMILES strings
A challenge for ML methods in chemistry is how to incorporate information about molecular
structure and geometry. One route is to use SMILES (Simplified Molecular Input Line Entry
System) [8] strings, which are chains of chemical notation that describe the structure of
molecules. In our project we collaborated with Software for Chemistry & Materials (SCM), a
leading company in the field of computational chemistry. With the python library PLAMS [9]
in their Amsterdam Modeling Suite, we easily create a workflow to generate 3D structures
from SMILES strings and calculate descriptors at the electronic structure level with density
functional-based tight binding (DFTB) [10], which can be passed on straightforwardly to
extend the dataset and train an Alchemite™ model. Once more, this process can embed
expert knowledge of the domain into the dataset and create more columns for Alchemite™
models to learn from.
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Ichnite™
To accomplish the goal of linking scientific methods with machine learning models, a
generic, expandable, and flexible framework was developed by Intellegens. Ichnite™ is a
method-aggregation tool, previously used internally at Intellegens, that can pipe datasets
through multiple layers of data processing methods. Once the data has been processed, it
can be used to train an Alchemite™ model or as part of another workflow. During the project,
Ichnite™ has been further developed and integrated with the Alchemite™ Analytics
browser-based user interface, creating a tool that could be reused on other projects and
beyond the Intellegens team. New scientific methods can be easily slotted into the
framework, so custom workflows can be created quickly to meet the needs of any domain.

Aggregating methods improves performance

How do we evaluate performance?
To evaluate the performance of these feature engineering methods on Alchemite™ models, 3
key metrics were considered:

● The coefficient of determination (R2) [11] of a model reflects the accuracy of its
predictions. An R2 close to 1 means the model is predicting an attribute well, whereas
values closer to and below 0 indicate that the model cannot find a useful relationship
between inputs and outputs.

● The Importance Matrix graph shows how important Alchemite™ considers one
column in the data when predicting another. This is most useful for showing which
descriptors are best for predicting which targets; descriptor columns are input
columns to a model and targets are the columns to be predicted.

● The Dimensionality Reduction plot is achieved by running Uniform Manifold
Approximation and Projection (UMAP) [12] method to reduce a multi-dimensional
dataset to a 2-dimensional plot. This can be a powerful tool in understanding trends,
as rows considered similar will be grouped together into different ‘clusters’.

It was expected that models using feature engineering would have higher R2 values for
model targets, show that the added domain knowledge derived from the use of physical
models was important in making new predictions, and show stronger clustering trends
compared to the original dataset

CALPHAD Phase Descriptors

To test out the implementation of CALPHAD into Ichnite™, an aluminium-titanium alloy
dataset was used. This contained 2005 rows and 27 columns, of which 23 were model
descriptors. These ranged from minor solute additions to different alloy temperatures. The 4
remaining columns were set as prediction targets for Alchemite™: yield strength (YS_[MPA]),
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elongation (EL_[%]), tensile strength (TS_[MPA]), and hardness (HV10). Figure 1 shows the R2

metric for each on a model trained on this original dataset. Alchemite™ did well at predicting
the top 3 targets, although it struggled to predict alloy hardness.

Figure 1. R2 for a model trained on the original alloy dataset.

An Ichnite™ chain using CALPHAD and Alchemite™ in sequence was developed to achieve
the results in Figure 2. This process generated three new model descriptors: Ti3Al, TiAl and
TiAl2. These columns described the state of the titanium-aluminium alloy at different
thermodynamic phases. As shown, all model targets increased in predictive accuracy,
especially alloy hardness. Alchemite™ is able to leverage the expert knowledge from these
columns to make more accurate predictions – the core goal of the MCAP project.

Figure 2. Improved R2 for the dataset with CALPHAD feature engineering.

Figure 3 shows the Importance Matrix from Alchemite™ Analytics for this feature engineered
model, ranked by how important each column is. The x-axis represents the model
descriptors and the y-axis represents the model targets. Alchemite™ is mainly using titanium
(Ti) and aluminium (Al) to predict the 4 targets, which is expected given they are the main
elements of the alloy. When ranked, the CALPHAD descriptors place 5th, 7th and 9th most
important. These new descriptors are regarded as very important by Alchemite™ for
predicting elongation and tensile strength, and also contribute to the quality of predictions
for the other targets from the increase in R2 across the board.
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Figure 3. Importance matrix for feature-engineered data.

Molecular descriptors from SMILES

The dataset used for testing molecular descriptors derived from SMILES strings was 350
rows of surfactant data with 7 columns: 2 numerical descriptors, 2 categorical descriptors,
and 3 numerical targets. These were surface tension (ST_at_CMC_mN_per_m), the alcohol
ethoxylates (log10_Ae_A2), and the critical micelle concentration (log10_CMC_mM).

Figure 4. R2 for a model trained on the original surfactant dataset.

Figure 4 shows the performance of Alchemite™ for predicting these molecular targets. The
surface tension predictions performed well but the model struggled to predict the other 2
targets, understandably given the dataset lacks information about chemical structure.
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We then extended the surfactant dataset with calculated bonding energies and dipole
information at the DFTB level. This data is easily generated from SMILES strings with a
PLAMS python script in AMS, which makes use of chemical simulation methods such as
density function theory [13] and molecular dynamics [14]. The script generated five
additional molecular descriptors for the dataset. One new column contained information on
the bonding energy for each SMILES string. The remaining four described dipole information.
Figure 5 shows the resultant R2 for each target on a model trained with these new
descriptors. The prediction accuracy became a lot more consistent across the model
targets, with a large increase on the target with which Alchemite™ had initially struggled.

Figure 6 shows the dimensionality reduction (UMAP) plot for the original dataset reduced to
2 dimensions. The algorithm struggles to identify meaningful patterns, as a large collection
of rows have been bundled into one cluster. This reveals no useful information about the
surfactants, as niche differences between the data points are not exploited.

Figure 5. Improved R2 for the dataset enriched by PLAMS calculations.

Figure 6. Dimensionality reduction plot for original surfactant dataset.
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Figure 7 shows the UMAP plot for the dataset extended with PLAMS. The large cluster has
now been broken down into multiple sub-clusters, demonstrating the effect of the new
molecular descriptors. The expert information in these new columns has revealed more
about each surfactant data point, which has allowed the UMAP algorithm to more
specifically group rows of data in this new space.

Figure 7. Dimensionality reduction plot for enriched surfactant dataset.

Commercial applications

Feature engineering through the use of physical science methods has proven to improve
model accuracy, reveal important relationships between targets and descriptors, and aid in
data visualisation. These are all important metrics for a user in understanding their dataset
and how it can benefit them in their chosen domain. Experiments and suggestions made by
Alchemite™ using these scientific methods in the background will be more reliable and
backed by expert reasoning, which will save time and help to identify new solutions in the lab
or the factory. The improved ability to extract value from data and make accurate predictions
will allow users to achieve their goals faster and more consistently, realising the vision of
Materials 4.0.

In our project, we were able to integrate feature engineering seamlessly into the existing
Alchemite™ Analytics commercial software product, ensuring that users will be able to
benefit from this method integration with minimal effort. Figure 8 shows a screenshot from
the prototype delivered by Intellegens for the MCAP project. Users are able to select their
engineering method and the required inputs in their dataset. The columns are then validated
and the expected outputs shown. It is planned to allow the chaining of these data
manipulation methods via this interface, meaning outputs from one method can act as
inputs to the next.
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Figure 9 shows the ‘Predict’ page for the prototype. The CALPHAD outputs are tagged with a
gear symbol and set as read-only, as their values are generated from user inputs for
aluminium (Al), copper (Cu), and zinc (Zn). Alchemite™ Analytics processes the user input
live to calculate the phase descriptors for the data, which are then used to make predictions
for the target UTS (ultimate tensile strength).

Figure 8. Selecting the physical science method in Alchemite™ Analytics.

Figure 9. Setting up an ML prediction using feature-engineered data as inputs.

The implementation of feature engineering for further physics and chemistry methods is an
ongoing project at Intellegens. The structure of the Ichnite™ framework allows the quick
development of new methods, which can then be used to generate more powerful
Alchemite™ models. Future collaboration with prospective and existing customers will help
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integrate bespoke data processing methods into Ichnite™, removing the need to run custom
scripts outside of the Alchemite™ platform. This kind of collaboration will help improve the
quality of results for customers and the efficiency of the digital experiment workflow.

Conclusion

The project has created a framework for using physical science methods in combination
with the Alchemite™ machine learning method, which can be made easy to use via the
Alchemite™ Analytics user interface. The Alchemite™ machine learning tool delivers
improved results when equipped with domain knowledge generated by these algorithms.
Integration of feature engineering in this way allows users to improve models without having
to set up custom scripts on their data. Collaboration with Intellegens can ensure the best
scientific methods are implemented with priority, which will help extract even more value
from the Alchemite™ platform.

Would you like to collaborate with Intellegens with custom or existing feature engineering
methods? We can work together to implement industry-standard processing methods that
are commonly used in your domain, or even implement custom data processing scripts that
only you can access. Get in touch!

info@intellegens.com

References

1. Stuckner, J., Whitehead, T.M., Parini, R.C., Conduit, G.J., Benafan, O. and Arnold, S.M.,
2022. Design of Materials with Alchemite (No. E-20054).

2. Whitehead, T.M., Chen, F., Daly, C. and Conduit, G., 2022. Accelerating the Design of
Automotive Catalyst Products Using Machine Learning Leveraging Experimental Data
to Guide New Formulations.

3. Ghobakhloo, M., 2020. Industry 4.0, digitization, and opportunities for sustainability.
Journal of cleaner production, 252, p.119869.

4. The Henry Royce Institute, 2021, Material 4.0 Roadmap: Predicting and controlling
materials’ microstructures and performance.
https://www.royce.ac.uk/collaborate/roadmapping-landscaping/materials-4-0/

© 2023 Intellegens Ltd. 9 intellegens.com

mailto:info@intellegens.com
https://www.royce.ac.uk/collaborate/roadmapping-landscaping/materials-4-0/


5. Barbedo, J.G.A., 2018. Impact of dataset size and variety on the effectiveness of
deep learning and transfer learning for plant disease classification. Computers and
electronics in agriculture, 153, pp.46-53.

6. Saunders, N. and Miodownik, A.P. eds., 1998. CALPHAD (calculation of phase
diagrams): a comprehensive guide. Elsevier.

7. Otis, R. & Liu, Z.-K., 2017. pycalphad: CALPHAD-based Computational
Thermodynamics in Python. Journal of Open Research Software. 5(1), p.1.

8. Weininger, D., 1988. SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. Journal of chemical information and
computer sciences, 28(1), pp.31-36.

9. Michał Handzlik, Bas van Beek, Patrick Melix, Robert Rüger, Tomáš Trnka, Lars Ridder,
Felipe Zapata, Python Library for Automating Molecular Simulations, SCM

10. R. Rüger, A. Yakovlev, P. Philipsen, S. Borini, P. Melix, A.F. Oliveira, M. Franchini, T. van
Vuren, T. Soini, M. de Reus, M. Ghorbani Asl, T. Q. Teodoro, D. McCormack, S.
Patchkovskii, T. Heine, AMS DFTB, SCM, Theoretical Chemistry, Vrije Universiteit,
Amsterdam, The Netherlands, http://www.scm.com

11. Cameron, A.C. and Windmeijer, F.A., 1997. An R-squared measure of goodness of fit
for some common nonlinear regression models. Journal of econometrics, 77(2),
pp.329-342.

12. McInnes, L., Healy, J. and Melville, J., 2018. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

13. Koch W, Holthausen MC. A chemist's guide to density functional theory. John Wiley &
Sons; 2015 Nov 18.

14. Hollingsworth, S.A. and Dror, R.O., 2018. Molecular dynamics simulation for all.
Neuron, 99(6), pp.1129-1143.

About Intellegens

Intellegens provides unique deep learning software, Alchemite™. Our focus is on making it
easy to apply machine learning to accelerate innovation in materials, chemicals,
manufacturing, and beyond. Alchemite™ can train machine learning models from real-world,
sparse, noisy data. The method originated at the University of Cambridge and development
is on-going at Intellegens. Successful applications include industrial R&D and process
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improvements in superalloys, additive manufacturing, chemical processes, formulated
products, batteries, and drug discovery.

About the Henry Royce Institute

Operating with its Hub at The University of Manchester, Royce is a Partnership of nine
leading institutions – the universities of Cambridge, Imperial College London, Liverpool,
Leeds, Oxford, Sheffield, the National Nuclear Laboratory, and UKAEA. Royce’s associate
partners are the universities of Cranfield and Strathclyde. Royce coordinates over £200
million of facilities, providing a joined-up framework that can deliver beyond the current
capabilities of individual Partners or research teams. Royce is the front door to the UK
materials research and innovation community open to academia, industry and the public.
Their research tackles some of the most pressing challenges facing today’s society, from
providing energy for future cities to decarbonisation and new recyclable materials.

About SCM

SCM develops and markets the Amsterdam Modeling Suite (AMS), a powerful computational
chemistry software package. The SCM staff are passionate to help chemistry and materials
researchers develop new and improved molecules, materials, and processes more quickly
and with less wasteful experiments. Integrating with deep-learning tools such as Alchemite™
can further improve discovery time & costs.

The comprehensive AMS package includes electronic structure methods (DFT, DFTB), force
field based methods (ReaxFF, Machine Learned potentials), kinetics, fluid thermodynamics
(COSMO-RS), as well as an excellent user interface (GUI), python scripting tools for
workflows and parametrization, and the central AMS driver for complex energy landscape
exploration. AMS is being further expanded for multiscale modelling in catalysis, organic
electronics, and batteries.

www.intellegens.com | info@intellegens.com | @intellegensai

© 2023 Intellegens Ltd. 11 intellegens.com


