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Executive Summary 
 
What are the optimal composition, chemistry, or processing parameters to achieve 
commercial performance goals? Answering such questions as quickly as possible is 
key to the design of formulations, chemicals, materials, and biopharmaceuticals. 
Traditional approaches suffer from key disadvantages. Expert-driven design is labor-
intensive and time-consuming. Single-factor analysis misses the effects of correlation 
between factors. Conventional Design of Experiments is exhaustive but focused on 
covering the design space rather than rapidly achieving performance goals.  

Machine learning identifies improved products and processes much faster than 
traditional methods by enabling an adaptive approach that focuses experimental effort 
on those routes most likely to be successful. Since experimental costs associated with 
a typical industrial R&D project run to hundreds of thousands of dollars, the resulting 
50-80% reduction in experimental workload delivers significant return on investment. 

 

 

Approaches to experimental design 

The goal of R&D is to design new products and 
processes to meet commercial needs as quickly and 
efficiently as possible. Experimental campaigns to 
optimize formulations, chemistry, materials, or 
manufacturing processes can consume vast 
amounts of time and resources. New methodologies 
to accelerate this innovation are crucial for time-to-
market and cost reductions. 

Historically, such R&D has been driven by the knowledge of domain experts, who leverage 
years of experience to decide on the next experiments. Relying on experts to direct 
experimental campaigns has limitations for commercial development: the bottleneck of single 
experts’ availability, variability across an organization as different experts make inconsistent 
decisions, and the risk of expertise being lost when valuable members of staff move on.  

The road to more reproducible, methodical experimental design begins with systematically 
optimizing single factors in the so-called COST (Change One Separate variable at a Time) 
framework. This approach requires the identification of the most important factor for a given 
system. This factor is then optimized and all other factors held constant. The procedure is 
repeated for the next most important factor, with all other factors held constant, and so on. 

Experimental campaigns 
to optimize formulations, 
chemistry, or materials 

consume vast amounts of 
time and resources  
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Although COST is more systematic than expert-driven design, it is unsuitable for complex 
systems where there are interactions between the factors or non-linear responses. 

Conventional Design of Experiments (DOE) overcomes these shortcomings by efficiently 
covering design space to expose how each factor influences the responses. The conceptually 
simplest method is ‘full factorial’ DOE, where N levels for each of F factors are considered, and 
all possible combinations are measured. For example, one factor may be temperature, 
measured at 4 different levels (0°C, 25°C, 50°C, 75°C). The approach is illustrated by the grid 
of blue points in Figure 1a for F=2 and N=4. This provides exhaustive coverage of the 
experimental possibilities and often enables powerful insights into the relationships between 
factors, their combinations, and properties of interest. However, a full factorial design requires 
NF experiments, which becomes prohibitively expensive as N and F increase. 

Figure 1a. Full factorial DOE in this case 
requires 16 experiments (blue points) to 

cover the space in search of the optimum 
(red cross). 

Figure 1b. Latin hypercube sampling of two 
factors requires fewer experiments but may 
sacrifice accuracy in locating the optimum. 

More advanced traditional DOE techniques cover the design space with fewer experiments. 
One popular approach is Latin Hypercube sampling, where instead of using every combination 
of factors, one measurement is proposed per level for each factor, ensuring that this is 
achieved simultaneously for all factors. This may, however, sacrifice accuracy (Figure 1b). 
More advanced statistical DOE methods include Box-Behnken and Plackett-Burman designs, 
central composite designs, Taguchi arrays, and definitive screening designs. Implementing 
these, however, requires statistical knowledge and insight into the likely relationships between 
the input variables and the response. 

Traditional DOE works well for understanding linear effects in a system and some of the more 
advanced statistical DOE methods are good for quadratic (second order) effects. However, 
these conventional approaches to DOE are not, in general, practical for higher-order, non-
linear effects. Yet most real experimental problems are characterized by such interactions.  

An alternative is to apply machine learning to experimental design, proceeding iteratively from 
a starting point to identify the experiments that provide the quickest route to the optimum, 
achieving project goals with substantially less testing (Figure 2). Exploring more complicated 
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design spaces with higher order effects (Figure 3) is a strength of machine learning, which 
can understand and dynamically leverage relationships between inputs, in contrast to more 
static DOE approaches. 

 

Figure 2. Machine learning enables an iterative 
approach to find the fastest route to the 

optimum. 

 

Figure 3. Machine learning can also 
navigate more complex design spaces. 

The key point is that all conventional DOE approaches fundamentally attempt to answer the 
same question: how to sample the design space most efficiently to understand the way that 
each factor influences each response. But this is not the most commercially relevant question 
for experimental design: instead of covering all available options, the true aim of a design 
project is to find the most effective product in as few experiments as possible. 

 

Adaptive experimental design 

Machine learning (ML) enables more sophisticated 
experimental design strategies that move from 
simply covering the design space to directly 
targeting optimal formulations, chemicals, 
materials, or processes to achieve a project’s goals. 

An ML approach can learn from some initial data, 
with no need to apply advanced statistical 
knowledge to select the right methods. A ‘training’ process constructs an ML model – a 
mathematical representation of the system being studied. The model is then used to select 
which experiments to carry out next by determining which measurement will be most likely to 
succeed against the project’s goals, while also helping to improve the ML model itself. This 
results in an adaptive approach that creates a virtuous cycle (Figure 4) of a rapidly improving 
model suggesting increasingly performant new products. 

Machine learning can 
determine which 

experiments are most 
likely to succeed 
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Figure 4. A schematic of the adaptive experimental design approach. 

Figure 5 shows the performance of a variety of standard DOE approaches at finding the 
optimal point of a simple 4-factor analytic function. Almost all the standard approaches 
achieve comparable results, finding similarly good values in similar numbers of experiments.  

 

Figure 5. Performance of a variety of standard DOE approaches (gray points) at finding the 
optimal point of a 4-factor analytic function. The vertical axis shows how far the best result is 
from the optimum. The horizontal axis shows how many experiments are required to achieve 

this result. Alchemite™ (red) gives superior accuracy in 10 x fewer experiments. 

Machine learning-driven adaptive experimental design, such as that enabled by the 
Alchemite™ ML method, finds better results quicker. It requires, in theory, ten times fewer 
experimental measurements to find formulations much closer to the optimal result than those 
identified by standard DOE. In discovery or development projects, this translates directly to 
many-fold savings in the time and resources required to achieve project goals, improving 
efficiency and productivity of the R&D process.  
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Case study examples 

Figure 5 showed a theoretical comparison of adaptive and traditional DOE, proposing a 90% 
advantage through the machine learning approach. What is achievable in practice? 

Johnson Matthey, in their studies of catalysis formulations using Alchemite™, have reported 
halving of experimental workload in one project and identification of a new experimental route 
in another project that would lead to a five-fold reduction in the number of experiments. 

The Advanced Manufacturing Research Center (AMRC) used Alchemite™ to plan a test 
program for manufacturing research in composite tooling that achieved project objectives 
with 80% fewer tests. 

Domino Printing Sciences saw a dramatic reduction in the amount of experimentation needed 
in an ink reformulation project. They found new formulations after two batches of experiment 
on 12 formulations proposed by Alchemite™. Traditional DOE would have required 1,800 
formulations. 

The exact savings in time and cost in an 
experimental program taking an adaptive 
DOE approach will vary based on the 
details of the system being studied and 
project objectives. But, based on their 
experience of many such projects, 
including those above, the Intellegens 
team expects savings in the range 50-80%. 

More on these and other case studies can 
be found at intellegens.com/casestudies. 

 

Guide your experimental design using Alchemite™  

With the Alchemite™ software, you transform R&D with machine learning by easily 
experimenting, modeling, and visualizing real-world data. Choose the best experiment to run 
next by quickly assessing the accuracy and confidence levels of results. 

Alchemite™ has several advantages for DOE when compared to other ML methods. Unlike 
most ML methods, it can train models using sparse data (i.e., data with missing 
measurements) and data that is noisy. In other words, it works with typical experimental and 
process datasets. This means that researchers can get started much sooner on the iterative 
cycles of adaptive experimental design, without needing to first generate ‘clean’ datasets. 
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Alchemite™ also incorporates accurate uncertainty quantification methods. This enables it to 
predict and map the design landscape together with associated confidence levels, thus 
enabling scientists and engineers to more effectively identify the next best experiments to run 
to most rapidly succeed in discovery projects. 

All of this makes Alchemite™ a powerful DOE tool. Its benefits when compared with traditional 
DOE methods are summarized in Table 1. 

Table 1. Comparison of traditional DOE with Alchemite™ 

Limitation of traditional DOE Alchemite™ approach 

Still result in a high experimental 
burden 

Suggests the most important experiments, giving 
a 50-80% reduction in the number needed 

It’s hard to address cross-correlations; 
these methods often model one 
parameter at a time 

Captures complex, high dimensional, non-linear 
relationships: ideal to map design space for 
materials, formulations, chemicals, & processes 

Can require statistical expertise Method learns from the data provided to build a 
model – the user does not need statistical 
knowledge to set it up 

Maps out a set of experiments, but 
the analysis and understanding of 
results is a separate task 

Creates a model that can be used to understand 
what drives specific properties, and as a 
predictive tool  

 

Alchemite™ can be viewed as an evolution from traditional DOE. But familiar DOE methods 
remain widely used and valuable in many scenarios. The approaches can be used in a 
complementary fashion.  

Table 2. How traditional DOE and Alchemite™ offer complementary capabilities 

Traditional DOE Alchemite™  

Use it to explore all options Use it to efficiently achieve a goal 

Use it to gather first data on a new 
problem 

Use it to gain value from existing data, including 
merging data from previous projects 

All experiments can be run 
simultaneously 

Typically iterate through experiments 

Useful if you require a guarantee on 
number (not quality) of experiments 

Aim for the highest quality experiments 

Uses / requires advanced statistical 
knowledge 

Pose question, get an answer in the domain 
language (no statistical / ML knowledge needed) 
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Alchemite™ Software 

The Alchemite™ Suite is a range of easy-to-use R&D tools, each focused on a key challenge 
for R&D managers, scientists, experimentalists, or data scientists. Give the right app to the 
right team member, speeding and informing their work. Then share results and collaborate 
across your team, creating an integrated machine learning solution for your R&D organization. 

For Design of Experiments, Alchemite™ Designer provides a simple web browser-based user 
interface enabling you to set up and run DOE projects in just a few button clicks – no lengthy 
training courses, no need for advanced statistics, and no need for coding.  

More at intellegens.com/doe/. 

 

Figure 6. Alchemite™ Designer – DOE made easy. 

 

About Intellegens 

Our vision is that machine learning will drive innovation and deliver value wherever data is 
used in R&D. We aim for best-in-class easy-to-use machine learning software for data analysis 
in chemicals, materials, life science, and manufacturing. Our Alchemite™ technology 
originated at the University of Cambridge and development is on-going at Intellegens, in close 
collaboration with our growing community of customer organizations. These represent 
sectors including additive manufacturing, aerospace, alloys, batteries, biopharmaceuticals, 
ceramics, chemical processes, composites, consumer products, cosmetics, drug discovery, 
energy, food and beverage, formulated products, paints, plastics, and printing technology. 

www.intellegens.com | info@intellegens.com  


